Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon.
نویسندگان
چکیده
Nanoporous silicon (NPSi) has received significant attention for its potential to contribute to a large number of applications, but has not yet been extensively implemented because of the inability of current state-of-the-art nanofabrication techniques to achieve sufficiently small pore size, high aspect ratio, and process scalability. In this work we describe the fabrication of NPSi via a modified metal-assisted chemical etching (MACE) process in which silica-shell gold nanoparticle (SiO2-AuNP) monolayers self-assemble from solution onto a silicon substrate. Exposure to the MACE etchant solution results in the rapid consumption of the SiO2 spacer shell, leaving well-spaced arrays of bare AuNPs on the substrate surface. Particles then begin to catalyze the etching of nanopore arrays without interruption, resulting in the formation of highly anisotropic individual pores. The excellent directionality of pore formation is thought to be promoted by the homogeneous interparticle spacing of the gold core nanocatalysts, which allow for even hole injection and subsequent etching along preferred crystallographic orientations. Electron microscopy and image analysis confirm the ability of the developed technique to produce micrometer-scale arrays of sub 10 nm nanopores with narrow size distributions and aspect ratios of over 100:1. By introducing a scalable process for obtaining high aspect ratio pores in a novel size regime, this work opens the door to implementation of NPSi in numerous devices and applications.
منابع مشابه
Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography.
We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF(6), optimized for the formation of deep nanopores. We have realized structures with pitches between 440 ...
متن کاملWafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
We demonstrate wide-area fabrication of sub-40 nm diameter, 1.5 µm tall, high aspect ratio silicon pillar arrays with straight sidewalls by combining nanoimprint lithography (NIL) and deep reactive ion etching (DRIE). Imprint molds were used to pre-pattern nanopillar positions precisely on a 200 nm square lattice with long range order. The conventional DRIE etching process was modified and opti...
متن کاملSilicon deposition in nanopores using a liquid precursor
Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid pr...
متن کاملVersatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale
We report on a method of fabricating variable patterns of periodic, high aspect ratio silicon nanostructures with sub-50-nm resolution on a wafer scale. The approach marries step-and-repeat nanoimprint lithography (NIL) and metal-catalyzed electroless etching (MCEE), enabling near perfectly ordered Si nanostructure arrays of user-defined patterns to be controllably and rapidly generated on a wa...
متن کاملPatterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis.
We report straight pores in titanium dioxide produced by a pattern transfer method with titanium fluoride hydrolysis. The resulting films on fluorine-doped tin oxide had pores with diameters of 30 nm and depths of 500 nm, corresponding to aspect ratios of 1:17.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 8 12 شماره
صفحات -
تاریخ انتشار 2016